Patterning the vertebrate head: murine Hox 2 genes mark distinct subpopulations of premigratory and migrating cranial neural crest.
نویسندگان
چکیده
The structures of the face in vertebrates are largely derived from neural crest. There is some evidence to suggest that the form of the facial pattern is determined by the crest, and that it is specified before migration as to the structures that is is able to form. The neural crest is able to control the form of surrounding, non-neural crest tissues by an instructive interaction. Some of this cranial crest is derived from a region of the hindbrain that expresses Hox 2 homeobox genes in an overlapping and segment-restricted pattern. We have found that neurogenic and mesenchymal neural crest expresses Hox 2 genes from its point of origin beside the neural plate, during migration and after migration has ceased and that rhombomeres 3 and 5 do not have any expressing neural crest beside them. Each branchial arch expresses a different combination or code of Hox genes in a segment-restricted way. The surface ectoderm over the arches initially does not express Hox genes, and later adopts an expression pattern that reflects that of neural crest that has come to underlie it. We suggest that initially the neural plate and neural crest are spatially specified, while the surface ectoderm is unpatterned. Subsequently some positional information could be transferred to the surface ectoderm as a result of an interaction with the neural crest. Given that the role of the homologous genes in insects is position specification, and that neural crest is imprinted before migration, we suggest that Hox 2 genes are providing part of this positional information to the neural crest and hence are involved in patterning the structures of the branchial arches.
منابع مشابه
Combined deficiencies of Msx1 and Msx2 cause impaired patterning and survival of the cranial neural crest.
The neural crest is a multipotent, migratory cell population that contributes to a variety of tissues and organs during vertebrate embryogenesis. Here, we focus on the function of Msx1 and Msx2, homeobox genes implicated in several disorders affecting craniofacial development in humans. We show that Msx1/2 mutants exhibit profound deficiencies in the development of structures derived from the c...
متن کاملPatterning of connective tissues in the head: discussion report.
The three papers presented by Noden, Thorogood and Lumsden in this session encompassed the connective tissues as broadly defined, i.e. soft (fibrous) connective tissue, cartilage, bone, muscle and the dental tissues, enamel and dentine, and utilized a variety of experimental techniques on both avian and mammalian embryos to explore specificity and patterning of the vertebrate head. Whether simi...
متن کاملPatterning of connective tissues in the head : discussion report BRIAN
The three papers presented by Noden, Thorogood and Lumsden in this session encompassed the connective tissues as broadly defined, i.e. soft (fibrous) connective tissue, cartilage, bone, muscle and the dental tissues, enamel and dentine, and utilized a variety of experimental techniques on both avian and mammalian embryos to explore specificity and patterning of the vertebrate head. Whether simi...
متن کاملTemporal requirement of Hoxa2 in cranial neural crest skeletal morphogenesis.
Little is known about the spatiotemporal requirement of Hox gene patterning activity in vertebrates. In Hoxa2 mouse mutants, the hyoid skeleton is replaced by a duplicated set of mandibular and middle ear structures. Here, we show that Hoxa2 is selectively required in cranial neural crest cells (NCCs). Moreover, we used a Cre-ERT2 recombinase system to induce a temporally controlled Hoxa2 delet...
متن کاملInteractions between Hox-negative cephalic neural crest cells and the foregut endoderm in patterning the facial skeleton in the vertebrate head.
The vertebrate face contains bones that differentiate from mesenchymal cells of neural crest origin, which colonize the median nasofrontal bud and the first branchial arches. The patterning of individual facial bones and their relative positions occurs through mechanisms that remained elusive. During the early stages of head morphogenesis, an endodermal cul-de-sac, destined to become Sessel's p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 112 1 شماره
صفحات -
تاریخ انتشار 1991